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Plan of Lecture

The lecture will have three parts:

Part 1: The initial value problem for the Einstein equations

Part 2: Geometry of initial data

Part 3: Asymptotic behavior and localization of solutions



Part 1: The Einstein equations

We first recall the basic set up in General Relativity.

Mathematical Model: S4 is a smooth manifold with a Lorentz
signature metric g . This means that for any point p ∈ S we can
find a Lorentz basis e0, e1, e2, e3 for the tangent space so that
gab = εaδab where ε0 = −1 and εi = 1 for i = 1, 2, 3.
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Curvature

The simplest Lorentz manifold is Minkowski space which is R4

with the Lorentz metric given in standard coordinates x0, x1, x2, x3

by gab = εaδab. This is the flat space.

The local invariant which distinguishes a general Lorentz metric
from the flat one is the Riemann curvature tensor. It vanishes if
and only if we can introduce local coordinates in which the metric
is of Minkowski form. A metric which is not equivalent to the flat
metric is said to have curvature.
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The Einstein Equations

Matter in relativity is represented by tensor fields over S, and the
spacetime metric g represents the gravitational field. The matter
fields evolve from initial data via their equations of motion, and
the gravitational field evolves via the Einstein equation

Ric(g)− 1

2
R g = 8πT

where Ric denotes the Ricci curvature and R = Trg (Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equation.
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Initial Data

The solution is determined by initial data given on a spacelike
hypersurface M3 in S.

The fields at p are determined by initial data in the part of M
which lies in the past of p.

The initial data for g are the induced (Riemannian) metric, also
denoted g , and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g , p).
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The constraint equations for vacuum solutions

It turns out that four of the ten Einstein equations (n = 3) can be
expressed entirely in terms of the initial data and so do not involve
dynamical quantities. These come from the Gauss and Codazzi
equations of differential geometry.

In case there is no matter present, the vacuum constraint
equations become

RM + Trg (p)2 − ‖p‖2 = 0

3∑
j=1

∇jπij = 0

for i = 1, 2, 3 where RM is the scalar curvature of M.



The initial value problem

Given an initial data set (M, g , p) satisfying the vacuum constraint
equations, there is a unique local spacetime which evolves from
that data. This result involves the local solvability of a system of
nonlinear wave equations.

This should be compared to the fundamental theorem of
hypersurfaces from differential geometry. This says that data
(Mn, g , p) arises locally uniquely isometrically embedded as a
hypersurface in Rn+1 if and only if (g , p) satisfy the Gauss and
Codazzi equations. This theorem involves solving an
overdetermined system of PDEs of Frobenius type, so that the
solution reduces to solving a family of ODEs.
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The constraint equations with matter present

Using the Einstein equations with matter fields encoded in the
stress-energy tensor T together with the Gauss and Codazzi
equations, the constraint equations are

µ =
1

16π
(RM + Trg (p)2 − ‖p‖2)

Ji =
1

8π

3∑
j=1

∇jπij

for i = 1, 2, 3 where πij = pij − Trg (p)gij . Here the quantity µ is
the observed energy density of the matter fields as seen by an
observer moving normal to the spacelike hypersurface, and J is the
observed momentum density of the matter. Mathematically the
4-vector (µ, J) is gotten by evaluation of T in the direction normal
to M.



Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition T (u, v) ≥ 0
for any pair u, v of timelike or null vectors. This says that the
energy-momentum density 4-vector of the matter fields is
non-spacelike for any observer. For an initial data set this implies
the inequality µ ≥ ‖J‖.

In the time symmetric case (p = 0) the dominant energy condition
is equivalent to the inequality RM ≥ 0.



Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition T (u, v) ≥ 0
for any pair u, v of timelike or null vectors. This says that the
energy-momentum density 4-vector of the matter fields is
non-spacelike for any observer. For an initial data set this implies
the inequality µ ≥ ‖J‖.

In the time symmetric case (p = 0) the dominant energy condition
is equivalent to the inequality RM ≥ 0.



Asymptotic Flatness
The most natural boundary condition for the Einstein equations is
the condition of asymptotic flatness. This boundary condition
describes isolated systems which are the analogues of finite mass
distributions in Newtonian gravity. The requirement is that the
initial manifold M outside a compact set be diffeomorphic to the
exterior of a ball in Rn and that there be coordinates x in which g
and p have appropriate falloff

gij = δij + O2(|x |2−n), pij = O1(|x |1−n).
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Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is Rn+1 with the flat metric
g = −dx2

0 +
∑n

i=1 dx2
i . It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with
p = 0 and

gij = (1 +
E

2|x |n−2
)

4
n−2 δij

for |x | > 0. It is a vacuum solution describing a static black hole
with mass E . It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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ADM Energy and Linear Momentum

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy-momentum. These quantities are computed in
terms of the asymptotic behavior of g and p. For these definitions
we fix asymptotically flat coordinates x and we set
π = p − Tr(p) g .

E = 1
2(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
i ,j=1

(gij ,i − gii ,j)ν
j
0 dσ0

Pi = 1
(n−1)ωn−1

lim
r→∞

∫
|x |=r

n∑
j=1

πijν
j
0 dσ0, i = 1, 2, . . . , n

These limits exist under quite general asymptotic decay conditions.
Generally (E ,P) can be thought of as a 4-vector in the asymptotic
Minkowski space, and for a more general slice in these spacetimes
we have the mass m =

√
E 2 − |P|2.
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The positive energy theorem

The positive energy theorem says that E ≥ 0 whenever the
dominant energy condition holds, and that E = 0 only if (M, g , p)
can be isometrically embedded into the n + 1 dimensional
Minkowski space with p as its second fundamental form. In case
p = 0, the assumption is Rg ≥ 0, and equality implies that (M, g)
is isometric to Rn.

The problem can be posed in any dimension, and it can be proven
in various cases using mean curvature ideas (S & Yau) or using the
Dirac operator approach developed by E. Witten. In three
dimensions there is a third approach (for p = 0) which is the
inverse mean curvature flow proposed by R. Geroch and made
rigorous by G. Huisken and T. Ilmanen.

Recently M. Eichmair, L. H. Huang, D. Lee, and S. gave a proof of
the stronger inequality E ≥ |P| using mean curvature methods
related to those in the next section.
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Part 2: Geometry of initial data

A spacelike surface Σ in a spacetime is outer trapped if its area
decreases when it is moved in the outward pointing future null
direction. The Einstein equations have a focusing effect so that
trapped surfaces lead to singularities of the spacetime metric
(Penrose).
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Trapping and mean curvature

If a submanifold Σ is deformed along a vector field X which is
orthogonal to Σ, then the logarithmic rate of change of the area is
given by the component of the mean curvature in the X direction;
that is 〈~H,X 〉. Thus if we have a spacelike surface Σ ⊂ M3 ⊂ S4

in a spacetime, and we take X = ν + e0 where e0 is the future
pointing timelike unit normal to M and ν the outward pointing
unit normal to Σ in M. We see that the condition that Σ be outer
trapped is the condition

H + TrΣ(p) ≤ 0

where H is the mean curvature of Σ in M.

Note that if p = 0 this is the condition H ≤ 0.
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Minimal surfaces and MOTS
The notion of trapping naturally leads to the notion of a
marginally outer trapped surface (MOTS). Such a surface would
satisfy H + TrΣ(p) = 0, and if it is the boundary between surfaces
that are outer trapped and untrapped, it satisfies a stability
condition. For p = 0 this is the ordinary variational stability of the
area functional (second variation nonnegative for all variations).

For example the Schwarzschild horizon is a stable minimal surface.
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The geometry of MOTS

The constraint equations together with the dominant energy
condition tend to force most minimal surfaces and MOTS to be
unstable, so they impose strong geometric conditions on a stable
MOTS, Σ; for example, a compact Σ is forced to be simply
connected (n = 3) (Hawking’s theorem on the topology of a
stationary black hole). Generalized to higher dimensions by G.
Galloway and S..

A good analogue to think of is the behavior of geodesics on a
surface of positive curvature. If the curvature is uniformly positive
then a stable geodesic must be of uniformly bounded length.
There are no stable geodesic lines on complete surface of positive
curvature.
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A question coming from the proof of PET

A key ingredient of the mean curvature proof of the PET is the
statement that for n = 3 there can be no complete asymptotically
planar stable minimal surface (p = 0) or stable MOTS (general
case) provided the dominant energy condition holds strictly.

It leaves open the question of whether a nontrivial initial data set
can contain such a surface. We will give a partial answer to this
question in the next part of the talk. It is related to the asymptotic
behavior of solutions of the vacuum constraint equations.
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Part 3: Asymptotic behavior and localization of solutions

The energy and linear momentum can be shown to exist under the
weak asymptotic decay

gij = δij + O2(|x |−q), pij = O1(|x |−q−1)

for any q > (n − 2)/2.

In order to understand the global properties of the Einstein
evolution it is important to understand what asymptotic form is
reasonable to assume. The positive energy theorem implies that
there are no solutions of the constraint equations with compact
support.
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What are good asymptotic forms?

Since it is possible to achieve any chosen pair E ,P by a suitably
boosted slice in the Schwarzschild, people have assumed that this
would be a natural asymptotic form for an asymptotically flat
solution of the vacuum constraint equations.

It was shown by J. Corvino (p = 0) and by Corvino and S. (also
Chruściel and Delay) that the set of initial data which are identical
to a boosted slice of the Kerr (generalization of Schwarzschild)
spacetime are dense in a natural topology in the space of all data
with reasonable decay.
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A further consequence of positive energy

If we let U denote the open subset of M consisting of those points
at which the Ricci curvature of g is nonzero, then we have the
following. It shows that under reasonable decay conditions the set
U must include a positive ‘angle’ at infinity.

Proposition Assume that (M, g , p) satisfies the decay conditions

gij = δij + O2(|x |2−n), pij = O1(|x |1−n).

Unless the initial data is trivial, we have

lim inf
σ→∞

σ1−nVol(U ∩ ∂Bσ) > 0.



Proof of proposition

The energy can be written in terms of the Ricci curvature

E = −cn lim
σ→∞

σ

∫
Sσ

Ric(ν, ν) da

for a positive constant cn. If our initial data is nontrivial, then we
have E > 0, and so for any σ sufficiently large we have

E/2 < cnσ

∫
Sσ

|Ric(ν, ν)| da ≤ cσ1−nVol(U ∩ ∂Bσ)

where the second inequality follows from the decay assumption.



Localizing in a cone

Let us consider an asymptotically flat manifold (M, g) with Rg = 0
and with decay

gij = δij + O2,α(|x |−q)

for (n − 2)/2 < q ≤ n − 2 some α ∈ (0, 1).

In a recent joint work with A. Carlotto we have shown that there is
a metric ḡ which satisfies Rḡ = 0 with ḡ = g inside a cone based
at a point far out in the asymptotic region while ḡ = δ outside a
cone with slightly larger angle. Moreover ḡ is close to g in a
topology in which the energy is continuous, so Ē is arbitrarily close
to E . The metric ḡ satisfies

ḡij = δij + O2,α(|x |−q)

provided q < n − 2.
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Where is the energy?

Since there is very little contribution to the energy inside the
region where ḡ = g and none in the euclidean region, most of the
energy resides on the transition region. This shows that one
cannot impose too much decay on this region and makes the
weakened decay plausible.



Consequences for stable surfaces

This construction shows that there is an abundance of nontrivial
initial data which contain stable minimal surfaces. Since we have
constructed solutions which are euclidean in a half space, we can
take planes in that half space.

The construction we have made is limited in the decay which can
be arranged, so the question is still open with |x |2−n decay. Some
evidence for this was given in a recent paper of A. Carlotto who
was able to rule out stable minimal surfaces (and MOTS in the
general case) under the assumption that the data is Schwarzschild
to leading order at infinity.
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n-body solutions

Another interesting application of the construction is that it gives
a method of ‘adding together’ initial data. If we have localized
solutions we can super-impose them by putting them in disjoint
cones. When we do this the energies and linear momenta add up.
Since we can approximate a general solution on an arbitrarily large
set and in a suitable topology, we can construct n-body initial data
with bodies which are far separated. Such a construction was done
using the Corvino/S-type construction recently by Chruściel,
Corvino, and Isenberg.



Two open questions

This work leaves open the following two questions:

1) If one assumes the Schwarzschild rate of decay
g = δ + O2(|x |2−n) for a nontrivial metric of non-negative scalar
curvature, can there be stable asymptotically planar minimal
surfaces? There is a similar question for general data with minimal
surfaces replaced by MOTS.

2) Can there be an area minimizing asymptotically planar minimal
surface in a nontrivial AF space with non-negative scalar curvature?



Some features of the proof

More precise results concerning smoothness and decay:

1) (Hölder spaces) Assume that g − δ ∈ C k,α
−q ∩ C l ,α

loc with
(n − 2)/2 < q < n − 2 and l ≥ k ≥ 2, then for the vertex Q large
and fixed angles we have a metric ḡQ described previously with

ḡQ − δ ∈ C k,α
−q ∩ C l ,α

loc and the bound

‖ḡQ − δ‖k,α,−q ≤ C = C (g , k , α).

2) (Sobolev spaces) Assume that g − δ ∈W k,p
−q ∩W l ,p

loc with
(n − 2)/2 < q < n − 2, l ≥ k ≥ 2, p > 1, and kp > n. It then

follows that ḡQ − δ ∈W k,p
−q ∩W l ,p

loc and

‖g − ḡQ‖k,p,−q ≤ ε(|Q|)

where ε(|Q|)→ 0 as |Q| → ∞.
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follows that ḡQ − δ ∈W k,p
−q ∩W l ,p

loc and
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Outline of proof I

We construct a region Ω which is a cone outside a unit ball
centered at Q and on which the transition will occur. We
construct a function φ which vanishes cleanly on ∂Ω and is a linear
function of the angle outside B1(Q). We then construct a metric g̃
of the form

g̃ = χg + (1− χ)δ

where χ(φ) is a smooth cutoff function which is 1 in a cone of
smaller angle and zero outside Ω.

We then seek a solution of the form ḡ = g̃ + h where h vanishes in
a conical neighborhood of ∂Ω (and outside Ω) with R(ḡ) = 0. The
equation can be written

R(ḡ) = R(g̃) + L̃h + Q(h) = 0

where L̃ is the linearization of the scalar curvature map at g̃ . Note
that R(g̃) = 0 in a conical region near ∂Ω.
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Outline of proof II

We have the formula for the operator

L̃h = δδh −∆g̃ (Tr(h))− 〈h,Ric(g̃)〉

where computations are with respect to g̃ . The adjoint operator is
then

L̃∗u = Hessg̃ (u)−∆g̃ (u)g̃ − uRic(g̃).

The composition is given by

L̃(L̃∗u) = (n − 1)∆(∆u) + 1/2(∆R̃)u + 3/2〈∇R̃,∇u〉
+ 2R̃(∆u)− 〈Hess(u),Ric(g̃)〉



Outline of proof III

We solve the equation

L̃h + Q(h) = f

using a Picard iteration scheme in spaces which impose decay of
|x |−q at infinity and decay of φN near ∂Ω where N is chosen large.
The proof involves first showing that L̃ is surjective in such spaces.

The basic estimate which enables us to impose rapid decay near
∂Ω is

‖u‖2,−s,Ω ≤ c‖L̃∗u‖0,−s−2,Ω

for any s > 0 where these are norms in L2 Sobolev spaces and no
boundary condition is imposed on u.
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Why do we need q < n − 2?

We need to show surjectivity of L̃, and this follows from injectivity
of L̃∗. The domain of L̃∗ is the dual space of the range of L̃, that is
the dual of H0,−2−q. This dual space is H0,2+q−n since we have

|
∫
M

f1f2 dµ| ≤ (

∫
M
|f1|2|x |−n+2(q+2))1/2(

∫
M
|f2|2|x |n−2(q+2))1/2,

and the right hand side is ‖f1‖0,−q−2‖f2‖q+2−n.

Since q < n − 2 implies that s = n − 2− q > 0, we can apply the
basic estimate to get the injectivity estimate

‖u‖2,2+q−n ≤ c‖L̃∗u‖0,q−n.

This bound is no longer true if q ≥ n − 2.
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Avoiding derivative loss
A natural way to solve the linear equation L̃h = f is to look for a
solution of the form L̃∗u and to observe that the operator L̃L̃∗ is a
self adjoint fourth order operator with leading term the
bi-harmonic operator. This idea goes back to a 1975 paper of A.
Fischer and J. Marsden. It has a drawback in that the lower order
terms of the operator L̃L̃∗ involve four derivatives of g̃ , and so the
solution h = L̃∗(u) is two derivatives less smooth than g̃ .

In our setting we can get around this derivative loss by exploiting
the fact that our metric g̃ is close to the euclidean metric, and by
writing our solution in terms of L∗(u) where L is the euclidean
operator. We can then write the linear equation in the form

L̃h = LL∗u + (L̃− L)(L∗u).

The derivative loss problem in the construction of solutions which
are equal to a Kerr slice near infinity was dealt with in a paper of
P. Chruściel and E. Delay using a smoothing procedure.
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