COHOMOGENEITY TWO ACTIONS ON $\mathbb{R}^m, m \geq 3$

BY

R. MIRZAIE

Abstract

We suppose that a connected and closed Lie group G of isometries of $\mathbb{R}^m, m \geq 3$, acts by cohomogeneity two on \mathbb{R}^m. Then we show that under some conditions, the orbit space is homeomorphic to \mathbb{R}^2 or $[0, +\infty) \times \mathbb{R}$.

1. Introduction

Let G be a connected and closed Lie group of isometries of a Riemannian manifold M. For each point $x \in M$, we denote the orbit containing x by:

$$G(x) = \{gx : g \in G\}.$$

We say that G acts by “Cohomogeneity K” on M, if

$$\dim M = K + \max\{\dim G(x) : x \in M\}.$$

If $K = 0$, then for each point $x \in M$, we have $M = G(x)$ and M is called homogeneous G-manifold. Homogeneous and cohomogeneity one manifolds are studied by several authors (see [1], [2], [7], [10], [11]). Study of cohomogeneity two Riemannian manifolds is still wide open. In [3] the authors studied cohomogeneity two Riemannian manifolds from a algebraic view point. In [8] it is considered that M is flat and G has fixed point in M. Then the orbits and orbit space are characterized. In this paper we consider cohomogeneity two actions on $\mathbb{R}^m, m \geq 3$. In Theorem 3.6 we suppose that G is a compact
connected subgroup of $\text{Isom}(R^m)$, which acts by cohomogeneity two on R^m. Then we show that the orbit space is homeomorphic to $[0, +\infty) \times R$. In Theorem 3.8 we suppose that G(compact or noncompact) has an irreducible orbit. Then we show that the orbit space is homeomorphic to $[0, +\infty) \times R$ or R^2.

2. Preliminaries

In this paper, when two spaces X and Y are homeomorphic we denote this by $X \sim Y$. Now, we mention some facts which we will use in the sequel. Let G be a connected and closed Lie subgroup of isometries of M. We denote by \overline{M} the set of orbits of this action and we equip \overline{M} with the quotient topology relative to the canonical projection $M \rightarrow \overline{M}, x \rightarrow G(x)$.

Definition 2.1. Let G and H be closed and connected subgroups of $\text{Isom}(M)$. We say that G and H are orbit-equivalent on M, if the set of orbits of G-action on M is equal to the set of orbits of H-action on M.

$$\{G(x) : x \in M\} = \{H(x) : x \in M\}$$

The following fact is clear.

Fact 2.2. If G and H are orbit-equivalent on M, then $\overline{M}_G = \overline{M}_H$.

Fact 2.3. Let \widetilde{M} and \widetilde{G} be the universal covering manifolds of M and G, with covering maps $\pi : \widetilde{M} \rightarrow M$ and $\kappa : \widetilde{G} \rightarrow G$. It is well known (see [4] pages 62-63) that \widetilde{G} acts on \widetilde{M}, such that for each $\tilde{x} \in \widetilde{M}$ and $\tilde{g} \in \widetilde{G}$ we have:

$$\pi(\tilde{g}\tilde{x}) = \kappa(\tilde{g})\pi(\tilde{x})$$

If M is simply connected then G and \widetilde{G} both act on M orbit equivalently and the map $\kappa : \widetilde{G} \rightarrow G$ is a representation of \widetilde{G} as isometries of M (the action of \widetilde{G} on M may be not effective).

Definition 2.4. Let G be a connected and closed subgroup of isometries of R^m. In Fact 2.3 if we let $M = R^m$ then we have $\widetilde{M} = R^m$ and π is the
identity map. So for each $\tilde{x} \in R^m$ and $\tilde{g} \in \tilde{G}$ we have

$$\tilde{g}\tilde{x} = \kappa(\tilde{g})\tilde{x}$$

The covering map $\kappa : \tilde{G} \to G$ is a representation of \tilde{G} on $G \subset Isom(R^m)$. This representation of \tilde{G} is called "induced representation".

By Fact 2.3 we have the following fact.

Fact 2.5. If G is a closed and connected Lie subgroup of isometries of R^m, then the group \tilde{G} the universal covering group of G acts on R^m by induced representation, orbit-equivalently to G, and we have:

$$\frac{R^m}{G} = \frac{R^m}{\tilde{G}}.$$

Fact 2.6. (See [2], [7] and [10]) Let G act by cohomogeneity one on M, then

(a) The orbit space $\frac{M}{G}$ is homeomorphic to one of the following spaces

$$R; [0, +\infty); S^1; [-1, 1].$$

(b) If M is simply connected, then $\frac{M}{G} \sim S^1$.

(c) If M is compact, then $\frac{M}{G} \sim S^1$ or $\frac{M}{G} \sim [-1, 1]$.

The isometry group of R^n is in the form $O(n) \times R^n$, where the action of $(A, b) \in O(n) \times R^n$ on R^n is as follows:

$$(A, b)(x) = A(x) + b.$$

The isometry (I, b) is called an ordinary translation.

$$(I, b)(x) = x + b.$$

Fact 2.7. If R^n is of cohomogeneity one under the action of a closed and connected Lie subgroup G of isometries of R^n, then

(a) $\frac{R^n}{G} \sim R$ or $\frac{R^n}{G} \sim [0, +\infty)$.

(b) If G contains ordinary translations only, then $\frac{R^n}{G} \sim R$.
Proof. (a). By Theorem 2.8 in [7], $\frac{\mathbb{R}^n}{G} \sim [-1,1]$ and by Fact 2.6(b), we have $\frac{\mathbb{R}^n}{G} \sim S^1$. Therefore $\frac{\mathbb{R}^n}{G} \sim R$ or $\frac{\mathbb{R}^n}{G} \sim [0, +\infty)$.

(b) If G contains ordinary translations only, then for each two points $x,y \in \mathbb{R}^n$ we have

$$G(x) = \{x + b : b \in G\}, \quad G(y) = \{y + b : b \in G\}.$$

So all orbits are diffeomorphic to each other and there is not any singular orbit (see [7] proof of Theorem 3.1). Thus by part (a), we have $\frac{\mathbb{R}^n}{G} \sim R$. □

Definition 2.8. Let M be a submanifold of \mathbb{R}^m, we say that M is reducible, if M is isometric to $M_1 \times M_2$, where M_1, M_2 are submanifolds of \mathbb{R}^m and $\dim M_i \geq 1$.

3. Results

Before stating our results we give a definition and lemma in general topology.

Definition 3.1. Let $I = [0, +\infty)$, $X = \bigcup_{t \in I} X_t$, where X is a topological space and for each t, X_t is a subspace of X and the union is disjoint. We say that X is a continuous motion of X_1 on I, if there exist a continuous map $\psi : X_1 \times I \rightarrow X$ such that

1. $\psi(x, t) \in X_t$.
2. $\psi(x, 1) = x$.
3. The collection B containing all of the sets in the form $\psi(U \times (a,b))$ and $\psi(X_1 \times [0,b))$ is a basis for the topology of X, (where $(a,b) \subset I$ and U is open in X_1).

The map ψ is called motion map.

Example 3.2. Let $X = \mathbb{R}^2$, $X_t = S^1(t) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = t^2\}$ and let $\psi : S^1(1) \times I \rightarrow \mathbb{R}^2$, $\psi(x, t) = tx$. It is easy to see that X is a continuous motion of X_1.

Lemma 3.3. Let $X = \bigcup_t X_t$, $Y = \bigcup_t Y_t$ be two spaces which are continuous motions of X_1, Y_1 under the motions $\psi : X_1 \times I \rightarrow X$ and
\(\phi : Y_1 \times I \rightarrow Y. \) Also let for each \(t \) in \(I \), there is a homeomorphism \(F_t : X_t \rightarrow Y_t \), such that

\(\phi_t \circ \psi_t = \phi_t \circ F_1(\ast) \)

where \(\psi_t(x) = \psi(x,t), \phi_t(x) = \phi(x,t) \). Then \(X \) is homeomorphic to \(Y \).

Proof. Consider the map \(F \) as:

\[F : X \rightarrow Y, F(x) = F_1(x), x \in X_t. \]

By definition, the collection \(B = \{ \phi(V \times (a,b)), \phi(Y_1 \times [0,b]) : V \text{ open in } Y_1, (a,b) \subset I \} \) is a basis for topology of \(Y \). \(F_1 \) is a homeomorphism. So if \(V \) is open in \(Y_1 \) then \(U = F_1^{-1}(V) \) is open in \(X_1 \). By using (*), we have:

\[
F^{-1}\{\phi(V \times (a,b))\} = \bigcup_{t \in (a,b)} F_t^{-1}\{\phi(x,t) : x \in V\} = \bigcup_t F_t^{-1}\{\phi_t(x) : x \in V\}
\]

\[
= \bigcup_t \{\psi_t \circ F_1^{-1}(x) : x \in V\} = \bigcup_t \{\psi_t(y) : y \in U\}
\]

\[
= \psi(U \times (a,b)).
\]

In similar way we can show that:

\[F^{-1}(\phi(Y_1 \times [0,b])) = \psi(X_1 \times [0,b]). \]

So for each open set \(W \) in \(Y \), \(F^{-1}(W) \) is open in \(X \). This means that \(F \) is continuous. In the similar way we can show that \(F^{-1} \) is continuous. Therefore \(F \) is a homeomorphism between \(X \) and \(Y \). \(\square \)

Theorem 3.4. ([5, p.56]) Let \(M = G(x) \) be a homogeneous irreducible submanifold of \(\mathbb{R}^n \), where \(G \) is a connected Lie subgroup of isometries of \(\mathbb{R}^n \). Then the universal covering group \(\tilde{G} \) of \(G \) is isomorphic to the direct product \(K \times \mathbb{R}^d \), where \(K \) is a simply connected Lie group. Moreover, the induced representation of \(\tilde{G} \) is equivalent to \(P_1 \bigoplus P_2 \) where \(P_1 \) is a representation of \(\tilde{G} \) in to \(SO(d) \) and \(P_2 \) is linear map from \(\mathbb{R}^d \) to \(\mathbb{R}^e \), \(n = d + e \) regarding \(\mathbb{R}^e \) as ordinary translations.

From Theorem 3.4 and its proof (in [5] pages 56, 57) we get the following corollary.
Corollary 3.5. If $M = G(x)$ is a homogeneous irreducible submanifold of \mathbb{R}^n, then \tilde{G}, the universal covering group of G, is orbit equivalent to a subgroup H of the group $\{(A,b) : A \in SO(d), b \in \mathbb{R}^e\}$, where H acts on \mathbb{R}^n, as follows

$$(A,b)(x,y) = (Ax, y + b); \ (x,y) \in \mathbb{R}^d \times \mathbb{R}^e = \mathbb{R}^n.$$

Theorem 3.6. If $G \subset ISO(\mathbb{R}^m)$ is compact and connected and acts by cohomogeneity two on $\mathbb{R}^m, m \geq 3$, then

$$\frac{\mathbb{R}^m}{G} \sim [0, +\infty) \times \mathbb{R}.$$

Proof. Since G is compact, by Cartan’s theorem (see [6] vol II page 111) it has at least one fixed point in \mathbb{R}^m. Without loss of generality, we assume that the origin is a fixed point of G. Let $S^{m-1}(r)$ be the standard sphere of radius r in \mathbb{R}^m.

$$S^{m-1}(r) = \{(x_1, \ldots, x_m) \in \mathbb{R}^m : \sum_{i=1}^{m} x_i^2 = r^2\}.$$

Since each $g \in G$ fixes the origin of \mathbb{R}^m invariant, for any $x \in S^{m-1}(r)$ we have $g(x) \in S^{m-1}(r)$. So we can consider G as a subgroup of isometries of $S^{m-1}(r)$ (i.e. $G \subset O(m)$). Let $r_2 > r_1 > 0$ and consider the following map

$$\begin{cases}
\phi_{r_1 r_2} : S^{m-1}(r_1) \to S^{m-1}(r_2), \\
\phi_{r_1 r_2}(x) = \frac{r_2}{r_1} x.
\end{cases}$$

Each $g \in G$ is a linear map on \mathbb{R}^m. So we have:

$$\phi_{r_1 r_2}(gx) = \frac{r_2}{r_1} (gx) = g(\frac{r_2}{r_1} x) = g\phi_{r_1 r_2}(x).$$

Therefore $\phi_{r_1 r_2}$ maps each orbit of the G-action on $S^{m-1}(r_1)$ diffeomorphically on to an orbit of G-action on $S^{m-1}(r_2)$. So topologically, the orbit foliation of $S^{m-1}(r_1)$ is alike the orbit foliation of $S^{m-1}(r_2)$. Since \mathbb{R}^m is of cohomogeneity two under the action of G, then for each $r > 0, S^{m-1}(r)$ is of cohomogeneity one. Consider the sphere $S^{m-1}(1)$. By Fact 2.6(b,c), $\frac{S^{m-1}(1)}{G}$.

is homeomorphic to $[-1,1]$. Let P be this homeomorphism.

$$P : \frac{S^{m-1}(1)}{G} \to [-1,1].$$

We have $\mathbb{R}^m = \bigcup_{t \in I} S^{m-1}(t)$, where $I = [0, +\infty)$. So $\frac{\mathbb{R}^m}{G} = \bigcup_{t} \frac{S^{m-1}(t)}{G}$. Let $X_t = \frac{S^{m-1}(t)}{G}$, $X = \frac{\mathbb{R}^m}{G}$, it is easy to see that X is a continuous motion of X_1 under the motion map ψ defined by:

$$\psi : X_1 \times I \longrightarrow X; \psi(G(x), t) = G(tx), x \in S^{m-1}(1).$$

Let Y be the subset of \mathbb{R}^2 defined by:

$$Y = \bigcup_{t \in I} \{t\} \times [-t, t].$$

and let

$$Y_t = \{t\} \times [-t, t], t \in I.$$

Y is a continuous motion of $Y_1 = \{1\} \times [-1, 1]$ under the map ϕ defined by:

$$\phi : Y_1 \times I \longrightarrow Y, \phi((1, a), t) = (t, ta).$$

Now for each t in I define the map $F_t : X_t \longrightarrow Y_t$ as follows

$$\begin{cases} F_t(G(x)) = (t, tP(G(\frac{x}{|x|}))), & |t| \neq 0, \\ F_0(o) = (0, 0), & |t| = 0. \end{cases}$$

Note that $X_0 = \{o\}, Y_0 = \{(0, 0)\}$. For each t in I, F_t is homeomorphism and the conditions of Lemma 3.3 are valid. Thus X is homeomorphic to Y. But easily we can show that Y is homeomorphic to $[0, +\infty) \times R$. Therefore X is homeomorphic to $[0, +\infty) \times R$.

Lemma 3.7. Let H be a closed and connected subgroup of $SO(d) \times \mathbb{R}^e$ which acts by cohomogeneity two on $\mathbb{R}^d \times \mathbb{R}^e = \mathbb{R}^m$ and let

$$S = \{A : (A, b) \in H \text{ for some } b \in \mathbb{R}^e\},$$

$$T = \{b : (A, b) \in H \text{ for some } A \in SO(d)\}.$$

Then
(1) One of the following is true.
(a) The cohomogeneity of S-action on R^d is 1 and the cohomogeneity of T-action on R^e is 1 or 0.
(b) The cohomogeneity of S-action on R^d is 2 and the cohomogeneity of T-action on R^e is 0.

(2) For $r > 0$, let $M_r = S^{d-1}(r) \times R^e \subseteq R^d \times R^e$, where $S^{d-1}(r)$ is the standard sphere in R^d with radius r. Then for each $r > 0$, H acts by cohomogeneity one on M_r and for each $r_1, r_2 > 0$ we have $\frac{M_{r_1}}{H} \sim \frac{M_{r_2}}{H}$.

(3) In (2), if for one $r > 0$, $\frac{M_r}{H}$ is compact, then $\frac{M_0}{H}$ is a one point space.

(4) $\frac{R^m}{H}$ is homeomorphic to $[0, +\infty) \times R$ or R^2.

Proof. (1) Since $H \subset S \times T$, we have:

$$2 = \text{cohomogeneity of } H \text{ action on } R^m \geq \text{cohomogeneity of }$$

$$+S\text{-action on } R^d \text{ cohomogeneity of } T\text{-action on } R^e.$$

Since S is compact, it has fixed point in R^d. Thus the cohomogeneity of S-action on R^d is ≥ 1. These yield to (a) or (b).

(2) Consider $(x, y) \in M_r, x \in S^{d-1}(r), y \in R^e$, we have:

$$H(x, y) \subseteq (S \times T)(x, y) = S(x) \times T(y) \subseteq S^{d-1}(r) \times R^e = M_r.$$

So H maps M_r on to itself and we can consider H as a subgroup of isometries of M_r. For $r_1, r_2 > 0$, the map $\varphi_{r_1 r_2} : M_{r_1} \to M_{r_2}; (x, y) \to (\frac{r_2 x}{r_1}, y)$ induces a homeomorphism between $\frac{M_{r_1}}{H}$ and $\frac{M_{r_2}}{H}$. Since $\text{dim}M_r = m - 1$ and the action of H on R^m is of cohomogeneity two, the action of H on M_r is of cohomogeneity one.

(3) Consider the map: $\phi_r : M_r \to M_0$ defined by $:\phi_r(x, y) = y$. ϕ_r induces a continuous and on to map: $\bar{\phi}_r : \frac{M_r}{H} \to \frac{M_0}{H}$. So $\frac{M_0}{H}$ must be compact. But it is easy to see that $\frac{M_0}{H} = \frac{R^e}{R}$. By part (1) of Lemma and Fact 2.7, we have $\frac{R^e}{R} = \{0\}$ or R. Since $\frac{M_0}{H} \sim \frac{R^e}{R}$ is compact, we get that $\frac{M_0}{H} \sim \frac{R^e}{R} = \{0\}$.

(4) We have $R^m = \bigcup_{t \in I} M_t$, where $I = [0, +\infty)$. So

$$\frac{R^m}{H} = \bigcup_t \frac{M_t}{H}.$$
Let

\[X = \frac{R^m}{H}, X_t = \frac{M_t}{H}. \]

\(X \) is a continuous motion of \(X_1 \) under the motion map \(\psi \) defined by

\[\psi : X_1 \times I \longrightarrow X, \psi(H(x,y),t) = H(tx,y); (x,y) \in M_1 = S^{d-1}(1) \times R^e \]

By Fact 2.6(a) and part (2) of Lemma, for all \(r > 0 \), \(\frac{M_r}{H} \) is homomorphic to one of the following spaces.

(I) \(S^1(r) \) (II) \([-r,r]\) (III) \([0, +\infty)\) (IV) \(R \).

We study each case separately

(I) \(\frac{M_r}{H} \sim S^1(r), r > 0 \).

Let

\[Y = R^2, Y_t = S^1(t), t \in [0, +\infty) \]

\(Y \) is a continuous motion of \(Y_1 \) under the map:

\[\phi : Y_1 \times I \longrightarrow Y, \phi(a,t) = ta. \]

Let \(P \) be the homeomorphism between \(X_1 = \frac{M_r}{H} \) and \(Y_1 = S^1(1) \). For each \(t \) in \(I \), define the map \(F_t : X_t \longrightarrow Y_t \) as follows:

\[
\begin{cases}
F_t(H(x,y)) = tP(H(\frac{x}{|x|}, y)), & t \neq 0, \\
F_0(o) = (0,0), & t = 0.
\end{cases}
\]

Note that \(Y_0 = (0,0) \) and by part (3) of Lemma, we have \(X_0 = \{o\} \). For each \(t \in I \), \(F_t \) is homeomorphism and the conditions of Lemma 3.3 are valid. So \(X \) is homeomorphic to \(Y = R^2 \).

(II) \(\frac{M_r}{H} = [-r,r], r > 0 \).

In this case we let

\[Y = \bigcup_t Y_t \]

where

\[Y_t = t \times [-t,t], \]
\[\phi : Y_1 \times I \rightarrow Y, \quad \phi((1, a), t) = (t, ta). \]

As like as the proof of Theorem 3.6, we can show that \(X \) is homeomorphic to \(Y \). Since \(Y \) is homeomorphic to \([0, \infty) \times R\), we get that \(X \) is homeomorphic to \([0, \infty) \times R\).

(III) \(\frac{M_r}{H} \sim [0, +\infty), \quad r > 0 \).

We show that this case can not occur. Consider the continuous and onto map

\[
\begin{cases}
\phi_r : M_r \rightarrow R^e \\
\phi_r(x, y) = y
\end{cases}
\]

\(\phi_r \) induces continuous and onto map \(\overline{\phi_r} \) between orbit spaces

\[
\phi_r : \frac{M_r}{H} \sim [0, +\infty) \rightarrow \frac{R^e}{T}.
\]

By part (1) of Lemma and Fact 2.7, \(\frac{R^e}{T} \) is homeomorphic to \(\{0\} \) or \(R \). If \(\frac{R^e}{T} \sim R \) then \(\overline{\phi} \) is a continuous and onto map as follows:

\[
\overline{\phi_r} : [0, +\infty) \rightarrow R.
\]

So the following map is continuous and onto

\[
\overline{\phi_r} : (0, +\infty) \rightarrow R - \{\overline{\phi_r}(0)\},
\]

which is a contradiction (because \(R - \{\overline{\phi_r}(0)\} \) is not connected.)

If \(\frac{R^e}{T} = 0 \), then \(T \) acts transitively on \(R^e \). So for each \((x, y) \in M_r\) there exists \((A, b) \in H\) such that \((A, b)(x, y) = (x_1, 0)\) for some \(x_1 \in S^{d-1}(r) \). Thus each \(H \)-orbit of \(M_r \) intersects the set \(S^{d-1}(r) \times \{0\} \subset S^{d-1}(r) \times R^e = M_r \). Let \(\kappa : M_r \rightarrow \frac{M_r}{H} \) be the projection on the orbit space and consider the map \(\eta : M_r \rightarrow S^{d-1}(r) \times \{0\}, \eta(x, y) = (x, 0) \) and let \(\kappa_1 \) be the restriction of \(\kappa \) on \(S^{d-1}(r) \times \{0\} \). Easily we see that the following diagram is commutative

\[
\begin{cases}
\eta : M_r \rightarrow S^{d-1} \times \{0\}
\end{cases}
\]

\[
\kappa \downarrow \quad \overline{\kappa_1}
\]

\[
\frac{M_r}{H}
\]
Since $S^{d-1}(r) \times \{0\}$ is compact, $\frac{M_r}{H}$ must be compact, which is a contradiction. Therefore the case III cannot occur.

(IV) $\frac{M_r}{H} \sim R, \ r > 0$.

If $\frac{R^e}{H} = 0$. As like as the case III we get a contradiction. Let $\frac{R^e}{H} = R$, we have:

$$R^m = (\{0\} \times R_e) \cup (\cup_{r>0} M_r)$$

and $\frac{\{0\} \times R_e}{H} = \frac{R^e}{H} = R$. Let

$$Y = [0, +\infty) \times R, Y_t = \{t\} \times R$$

Y is a continuous motion of Y_1, by the map $\phi : Y_1 \times I \longrightarrow Y$ defined by

$$\phi((1, a), t) = (t, a).$$

As like as before by suitable choice of the maps $F_t : X_t \longrightarrow Y_t$, we can show that X is homeomorphic to $Y = [0, +\infty) \times R$. □

Theorem 3.8. Let $R^m, m > 3$, be of cohomogeneity two, under the action of a connected and closed Lie subgroup G of $\text{Isom}(R^m)$, and suppose that there exists an irreducible orbit $G(x)$ for some x in R^m, then $\frac{R^m}{G}$ is homeomorphic to one of the following spaces:

$$[0, +\infty) \times R; \ R^2$$

Proof. Let $G(x)$ be an irreducible orbit of this action. By Corollary 3.5, \hat{G} the universal covering Lie group of G acts on R^m, orbit-equivalent to a subgroup of the group $\{(A, b) : A \in SO(d), b \in R^e\} = SO(d) \times R^e$, $d + e = m$, which we denote it by H. By Fact 2.5 and Corollary 3.5, we get that:

$$\frac{R^m}{G} \sim \frac{R^m}{H}$$

So we get the result by Lemma 3.7(4). □

References

Department of Mathematics, Faculty of Science, I.Kh. International University, Post code 34149-16818, Qazvin, Iran.

E-mail: R_MIRZAIOE@yahoo.com