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Plan of Lecture

Part 1: Volume, mean curvature, and minimal submanifolds
Part 2: Variational theory and recent applications

Part 3: Minimal surfaces and eigenvalue problems



Part 1: Volume and mean curvature |

Given a curve in space we can measure its length, and given a
surface we can measure its area. More generally we can measure
the k-dimensional volume of a submanifold ¥ in an n-dimensional

ambient space M".
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Given a curve in space we can measure its length, and given a
surface we can measure its area. More generally we can measure
the k-dimensional volume of a submanifold ¥* in an n-dimensional
ambient space M".

Given a vector field X on M, we may choose a family of
diffeomorphisms F; whose derivative F at t = 0 is equal to X. If
we take ¥; = F¢(X), then how does the volume change?



Volume and mean curvature I

Assuming that X is orthogonal to X, we have

d o

—dVy=—(H,X)dV att=0

dt

where H is the mean curvature of 2 : that is, for an orthonormal
basis e1, e, ..., e, tangent to

where §(v, v) is the normal component of the curvature of a curve
lying on X and tangent to v.
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where H is the mean curvature of 2 : that is, for an orthonormal
basis e1, e, ..., e, tangent to

where §(v, v) is the normal component of the curvature of a curve
lying on X and tangent to v.

We see that the volume of ¥ stationary for all deformations if and
only if H =0, and we call such a submanifold minimal. Note that
minimal does not mean volume minimizing.



Examples |

Minimal surfaces have been studied for hundreds of years. Here are
a few examples.
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Minimal surfaces have been studied for hundreds of years. Here are
a few examples.

This surface is called the catenoid. It was shown to be minimal by
L. Euler in 1744.



Examples Il
This is the helicoid found by Euler in 1774.




Examples Il

This is a minimal surface discovered by H. A. Schwarz in the 19th
century.




Examples IV

This surface was discovered by C. Costa and shown to be
embedded by D. Hoffman and W. Meeks in the 1980s.



Examples V

These high genus Costa surfaces are a very special case of a
general construction of N. Kapouleas from 1997.



A recent theorem on Minimal Surfaces in R3

Notice that of the examples we have described, only the plane and
the helicoid are simply connected. This means that any closed
curve can be continuously shrunk to a point. This property is
equivalent to being homeomorphic to the plane R.



A recent theorem on Minimal Surfaces in R3

Notice that of the examples we have described, only the plane and
the helicoid are simply connected. This means that any closed
curve can be continuously shrunk to a point. This property is
equivalent to being homeomorphic to the plane R.

It was shown by Meeks and Rosenberg in 2005, refining work of
Colding and Minicozzi, that the plane and the helicoid are the only
simply connected properly embedded minimal surfaces in R3.



Part 2: Variational theory and recent applications

The classical existence question for minimal surfaces is the
Plateau Problem named after the Belgian physicist J. Plateau
who lived in the early 19th century. He did extensive observations
on the behavior of soap films and bubbles. If one neglects gravity,
then soap films satisfy the variational principle that they minimize
area for their boundary (at least among nearby surfaces).
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surfaces bounding I'.
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The classical existence question for minimal surfaces is the
Plateau Problem named after the Belgian physicist J. Plateau
who lived in the early 19th century. He did extensive observations
on the behavior of soap films and bubbles. If one neglects gravity,
then soap films satisfy the variational principle that they minimize
area for their boundary (at least among nearby surfaces).

Plateau Problem: Given any reasonable simple closed curve I in
RR3, find a surface ¥ which bounds I and has least area among all
surfaces bounding I'.

To make this precise we have to specify the type of surface which
we allow. For example, do we consider only orientable surfaces?
Do we allow our surfaces to be singular? What does it mean to
bound I for very general surfaces?



The Plateau problem

In the picture we see an area minimizer for the given boundary wire
3
in R>.



The generalized Plateau problem

The Plateau problem can be posed in any dimension and
codimension and in an arbitrary curved space (Riemannian
manifold).

Generalized Plateau problem: Given a closed k — 1 dimensional
submanifold I which is the boundary of a k-dimensional
submanifold, find a submanifold ¥ of least volume among such
bounding submanifolds.




The generalized Plateau problem

The Plateau problem can be posed in any dimension and
codimension and in an arbitrary curved space (Riemannian
manifold).

Generalized Plateau problem: Given a closed k — 1 dimensional
submanifold I which is the boundary of a k-dimensional
submanifold, find a submanifold ¥ of least volume among such
bounding submanifolds.

A k-cycle is a closed oriented submanifold of dimension k. Two
k-cycles 1, ¥, are homologous if there is an oriented

k + 1-dimensional submanifold (possibly singular) B with

0B =Y — ¥s.

Minimizing in homology: Given a k-cycle g, find k-cycle which is
homologous to X of least volume.




Volume Minimizing Cycles

In the picture we see minimizing curves in the homology class of
curves which go one time around the handle.



Solvability of the problem

The Plateau problem for surfaces of disk-type in R” was solved by
J. Douglas in 1930. He won the first Fields medal for the work in
1936. Although there have been many extensions of this work
(surfaces with more general topologies, surfaces in Riemannian
manifolds), the method is fundamentally two dimensional.
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The Plateau problem for surfaces of disk-type in R” was solved by
J. Douglas in 1930. He won the first Fields medal for the work in
1936. Although there have been many extensions of this work
(surfaces with more general topologies, surfaces in Riemannian
manifolds), the method is fundamentally two dimensional.

A framework in which the generalized Plateau problem could be
solved was finally developed with the theory of integral currents
around 1960. This was done by H. Federer and W. Fleming. The
minimizer is constructed as a limit of a minimizing sequence, and
taking this limit requires completing the class of smooth oriented
submanifolds in a topology for which the volume is continuous (or
lower-semicontinuous). The price to be paid is that the solution is
potentially very singular.



Regularity and singularities

The solution of the generalized Plateau problem was the impetus
for the development of important methods to show the partial
regularity of solutions of physical and geometric variational
problems. There are many cases where singularities cannot be
avoided such as for complex varieties of C” which are special
solutions of the generalized Plateau problem.
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The solution of the generalized Plateau problem was the impetus
for the development of important methods to show the partial
regularity of solutions of physical and geometric variational
problems. There are many cases where singularities cannot be
avoided such as for complex varieties of C” which are special
solutions of the generalized Plateau problem.

It was assumed that singularities for volume minimizing
submanifolds could only occur when the codimension is greater
than one. A great surprise in the subject, discovered through the
work of several people by the late 1960s, was that for k = n—1
and n > 8 singularities do sometimes occur.



Are Singularities Stable under Perturbations?

A fundamental question about minimizing hypersurfaces is the
question of whether singularities are stable under perturbation of
the data (either the boundary or the metric on M), or whether
they can be perturbed away by a small deformation of the data.
For example, suppose we fix a homology class in a smooth
manifold M. We can then ask whether minimizers in this class can
be singular for an open set of metrics on M.



Are Singularities Stable under Perturbations?

A fundamental question about minimizing hypersurfaces is the
question of whether singularities are stable under perturbation of
the data (either the boundary or the metric on M), or whether
they can be perturbed away by a small deformation of the data.
For example, suppose we fix a homology class in a smooth
manifold M. We can then ask whether minimizers in this class can
be singular for an open set of metrics on M.

When n = 8 the singularities are isolated and in this case it was
shown by N. Smale that they can be perturbed away. In higher
dimensions we do not know the answer, but understanding a deeper
reason for the existence of singularities would be very important.



Second variation

Just as in calculus, the question of whether a critical point is a
local minimum can often be understood by looking at the second
derivatives. We can compute the second variation of the volume
when we deform a minimal submanifold along a vector field X.
When k = n—1 and there is an everywhere defined unit normal
vector field v along X, we can write X = pv. The second
derivative of the volume at t = 0 is given by the quadratic
expression

PX(p.0) = /z (V]2 — (A2 + Ric(v,1))¢?] dv

where ¢ is of compact support. Here ||A||? is the square length of
the second fundmental form (sum of squares of principal
curvatures), and Ric is the Ricci curvature of the ambient manifold
(will be explained in tomorrow'’s lecture).



Stability and Morse index

The second variation is related to an important differential
operator called the Jacobi operator

Lo = Dp + (|A? + Ric(v,v))g.

In fact we have

5T, ) = —/zwL(w) dv.



Stability and Morse index

The second variation is related to an important differential
operator called the Jacobi operator

Lo = Dp + (|A? + Ric(v,v))g.

In fact we have

3T (p, ) = —/zwL(w) dv.

If ¥ is compact with or without boundary, the number of negative
eigenvalues of L is finite and is called the Morse index of . If
each compact subdomain of ¥ has Morse index zero, then we say
that X is stable.



Geometry and second variation

It is through the second variation that the geometry influences the
behavior of minimal submanifolds. Positivity of the ambient
curvature provides a focusing effect which strongly limits the
behavior of stable minimal surfaces. (Think of the geodesics on the
sphere, the great circles.) This general principle has many
applications in geometry. One is to limit the topology of black
holes in general relativity. We will discuss this more in tomorrow's
lecture.



Min/Max Constructions

Constructions of minimal submanifolds which do not minimize
volume can sometimes be done by min/max arguments. The idea
is to sweep out the manifold by families of cycles of some finite
dimension p and then to minimize the maximum volume over all
such families.
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Constructions of minimal submanifolds which do not minimize
volume can sometimes be done by min/max arguments. The idea
is to sweep out the manifold by families of cycles of some finite
dimension p and then to minimize the maximum volume over all
such families.

The expected minimal surface should have Morse index at most p.



Existence and regularity of min/max hypersurfaces

The min/max construction of disk-type minimal surfaces was taken
up by M. Morse and C. Tompkins in 1940, and more general
variational theory was developed by F. Tomi and A. Tromba in the
1970s. Sacks and Uhlenbeck developed the variational theory for
surfaces in curved spaces around 1980. In the context of integral
currents the min/max theory was developed by F. Almgren in the
1960s.



Existence and regularity of min/max hypersurfaces

The min/max construction of disk-type minimal surfaces was taken
up by M. Morse and C. Tompkins in 1940, and more general
variational theory was developed by F. Tomi and A. Tromba in the
1970s. Sacks and Uhlenbeck developed the variational theory for
surfaces in curved spaces around 1980. In the context of integral
currents the min/max theory was developed by F. Almgren in the
1960s.

For k = n — 1 the partial regularity was proven around 1980 by the
speaker and L. Simon completing work by J. Pitts who had
handled low dimensional cases. A conclusion is that any compact
Riemannian manifold has a minimal hypersurface which is smooth
away from a singular set of Hausdorff dimension at most n — 8.



A Question about the Morse Index

In order to apply min/max theory to geometric situations it is
important to understand the Morse index of solutions since it is
through the second variation that the ambient geometry enters the
theory.

Despite the regularity of the min/max hypersurface, the Morse
index bound has not been proven. Recently, X. Zhou
(arXiv:1210.2112) has solved this problem for metrics with positive
Ricci curvature, showing that for simply connected M any basic
min/max hypersurface has Morse index 1, while for general such
M, any such hypersurface is either two sided with index 1 or a
double copy of a stable one-sided hypersurface (this happens for
RP™).



Recent applications of the variational theory: Ricci flow

The proof of the three dimensional Poincaré Conjecture uses the
variational theory for maps from S2 into a simply connected three
manifold M3. Given a metric g on M one can define the width of
g by

w(g) = minyyymaxees1 A(u(t))
where u(t) denotes a continuous path of maps from S? to M
which is homotopic to a standard path defining a sweepout of M
by an S family of maps.
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The proof of the three dimensional Poincaré Conjecture uses the
variational theory for maps from S2 into a simply connected three
manifold M3. Given a metric g on M one can define the width of
g by

w(g) = minyyymaxees1 A(u(t))

where u(t) denotes a continuous path of maps from S? to M
which is homotopic to a standard path defining a sweepout of M
by an S family of maps.

T. Colding and W. Minicozzi (following a suggestion of G.
Perelman) showed that, for a solution g(t) of the Ricci flow on M,
the width w(g(t)) goes to zero in finite time. This implies the
finiteness of the number of surgeries required in the Ricci flow to
show that M is diffeomorphic to S3.
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Given a compact surface ¥ in R3, the Willmore energy of ¥ is
defined by

W(X) = 1/4/2 H? da.

Thus we have W/(S?) = 4.



The Willmore conjecture |

Given a compact surface ¥ in R3, the Willmore energy of ¥ is
defined by

W(X) = 1/4/2 H? da.

Thus we have W/(S?) = 4.

This functional arises from physical considerations and is both
scale and conformally invariant; that is, it is invariant under
Mobius transformations. It is not difficult to show that for any
closed surface ¥ we have W(X) > 4r with equality only for round
spheres.



The Willmore Conjecture |l

In 1965, T. Willmore made the conjecture that if X is
homeomorphic to a torus, then we should have:

Willmore Conjecture: W(X) > 272 with equality only for
conformal images of a specific torus.




The Willmore Conjecture |l

In 1965, T. Willmore made the conjecture that if X is
homeomorphic to a torus, then we should have:

Willmore Conjecture: W(X) > 272 with equality only for
conformal images of a specific torus.

The torus achieving the minimum was conjectured to be the torus
of revolution gotten by revolving a circle of radius 1 about an axis
of distance v/2 from the center of the circle; explicitly

(u,v) = ((V/2 + cos u) cos v, (v/2 + cos u) sin v, sin u)

for 0 < u,v < 2.



The Marques-Neves theorem

Fernando Marques and André Neves solved the Willmore
Conjecture in the following strong form.

Theorem: If ¥ is any closed immersed surface of positive genus in
R3, then W(X) > 272. Equality holds if and only if ¥ is a
conformal image of the torus described on the previous slide.



The Marques-Neves theorem

Fernando Marques and André Neves solved the Willmore
Conjecture in the following strong form.

Theorem: If ¥ is any closed immersed surface of positive genus in
R3, then W(X) > 272. Equality holds if and only if ¥ is a
conformal image of the torus described on the previous slide.

The proof involves the use of min/max techniques for higher
dimensional families of cycles.



A very recent application

In a very recent paper (arXiv:1311:6501) Marques and Neves have
extended their techniques of min/max for higher dimensional
families to prove the following:

Theorem: Every compact Riemannian manifold M" for 3<n <7
contains infinitely many smooth closed embedded minimal
hypersurfaces.



A very recent application

In a very recent paper (arXiv:1311:6501) Marques and Neves have
extended their techniques of min/max for higher dimensional
families to prove the following:

Theorem: Every compact Riemannian manifold M" for 3<n <7
contains infinitely many smooth closed embedded minimal
hypersurfaces.

A conjecture of Yau is that every closed three manifold contains
infinitely many closed embedded minimal surfaces.
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A submanifold ¥ C S” is minimal if and only if the coordinate
functions x;, i = 1,2,...,n+ 1 are eigenfunctions of ¥ with
eigenvalue k.

To see this we can think of ¥ as a submanifold of R™! and we
have
A(X) = Hgat1 = Hgn + (Hgni1 - X)X = —kX

if and only if Hsn is zero. Note that the component in the X
direction is the trace along X of the second fundamental form of
Sn.



Minimal surfaces as eigenvalue extremals

In general the value k may not be the first eigenvalue, say A\, = k.
It turns out that the induced metric on a minimal surface in S” is
a stationary point for the variational problem associated with
Ap(g) taken over metrics of fixed area on X.
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early 1980s. They showed that if k = 2 is the first eigenvalue of a

minimal surface in S”, then the induced metric maximizes Ay over

all metrics in its conformal class of the same area. They used this

to determine the maximizing metric on RP?.
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The first suggestion of this goes back to P. Li and S. T. Yau in the
early 1980s. They showed that if k = 2 is the first eigenvalue of a

minimal surface in S”, then the induced metric maximizes Ay over
all metrics in its conformal class of the same area. They used this

to determine the maximizing metric on RP?.

In the middle 1990s, N. Nadirashvili substantially generalized this
to show that any smooth maximizing metric on a surface arises
from a minimal immersion in S” for some n by first eigenfunctions.
He used this to determine the maximizing metric on a torus.



Minimal two spheres in S”

The following theorem is due to H. Hopf and F. Almgren and uses
a complex analytic construction called the Hopf differential which
is constructed from the second fundamental form of a surface.

Theorem: Any minimal two sphere in S2 is equatorial; that is a
totally geodesic S% C S3.



Minimal two spheres in S”

The following theorem is due to H. Hopf and F. Almgren and uses
a complex analytic construction called the Hopf differential which
is constructed from the second fundamental form of a surface.

Theorem: Any minimal two sphere in S2 is equatorial; that is a
totally geodesic S% C S3.

The question of classifying minimal two spheres in higher
dimensional spheres leads to a beautiful mathematical theory. First
the isometric minimal immersions can be studied using
representation theory. The ideas for the general case begin with E.
Calabi and were developed by many authors in the context of
integrable systems.



Free boundary minimal submanifolds in the ball

There is a class of minimal submanifolds with boundary which
parallels the theory of minimal submanifolds of spheres. To
motivate it we note that the cone over a minimal submanifold of
the sphere is minimal in R™!, and if we look at the portion inside
the unit ball, it meets the boundary sphere orthogonally.



Free boundary minimal submanifolds in the ball

There is a class of minimal submanifolds with boundary which
parallels the theory of minimal submanifolds of spheres. To
motivate it we note that the cone over a minimal submanifold of
the sphere is minimal in R™!, and if we look at the portion inside
the unit ball, it meets the boundary sphere orthogonally.

More generally we refer to a minimal submanifold of the ball which
meets the boundary sphere orthogonally as a free boundary
solution. The coordinate functions on such a X satisfy the
condition that they are harmonic in the interior and satisfy the
boundary condiiton

aX,' .

a7

fori=1,2,...,n.



The eigenvalue problem

The coordinate functions on a free boundary minimal submanifold
are called Steklov eigenfunctions; that is, they are eigenfunctions
of the Dirichlet-Neumann map L : C*(9%X) — C*°(0X)

ou

Lu=—~—
u an

where @ is the harmonic extension of u.



The eigenvalue problem

The coordinate functions on a free boundary minimal submanifold
are called Steklov eigenfunctions; that is, they are eigenfunctions
of the Dirichlet-Neumann map L : C*(9%X) — C*°(0X)
o0
Lu=24
on
where 1 is the harmonic extension of u.

In the third lecture we will explain why the free boundary minimal
surfaces represent extremals over the space of metrics on a surface
with boundary of a Steklov eigenvalue.



Free boundary minimal disks in B”

The following theorem is due to J. C. C. Nitsche in 1985 using the
same Hopf construction previously discussed together with a
boundary analysis.

Theorem: Any free boundary minimal disk in B3 is a flat disk.
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spheres in S” we would expect that many such solutions would
exist.



Free boundary minimal disks in B”

The following theorem is due to J. C. C. Nitsche in 1985 using the
same Hopf construction previously discussed together with a
boundary analysis.

Theorem: Any free boundary minimal disk in B3 is a flat disk.

What happens for n > 47 Based on the analogy of minimal two
spheres in S” we would expect that many such solutions would
exist.

The following is a recent result with A. Fraser.

Theorem: Any free boundary minimal disk in B" for n > 4 is a flat
disk.



Outline of the proof

Assume that ¢ : D — B" is a conformal parametrization of such a
disk X. The conformality condition may be written ¢, - ¢, = 0.
The Hopf differential in complex form is given by

d = @é‘z dz?,

and it is a holomorphic quadratic differential with respect to the
normal connection with values in the normal bundle.



Outline of the proof

Assume that ¢ : D — B" is a conformal parametrization of such a
disk X. The conformality condition may be written ¢, - ¢, = 0.
The Hopf differential in complex form is given by

d = @é‘z dz?,

and it is a holomorphic quadratic differential with respect to the
normal connection with values in the normal bundle.

The free boundary condition implies that the normal vector valued
(0,2) tensor ® is real when applied to the boundary tangent. We
then consider the complex valued quartic differential ¢ - ® and
check that it is holomorphic and real along the boundary. It follows
that @ - & is identically 0 in D. From there we see that ® is
identically zero along 0D and hence in D. This implies that the
second fundamental form is zero and ¥ is a flat disk.



Generalizations to CMC surfaces in space forms

The same basic argument can be used to prove the following.

Theorem: A proper disk in B" with parallel mean curvature
meeting the boundary of B” orthogonally is either a flat disk or a
spherical cap.
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boundary orthogonally is an umbilic surface in a three dimensional
submanifold of constant curvature.



Generalizations to CMC surfaces in space forms

The same basic argument can be used to prove the following.

Theorem: A proper disk in B" with parallel mean curvature
meeting the boundary of B” orthogonally is either a flat disk or a
spherical cap.

Theorem: A disk with parallel mean curvature in any ball in a
simply connected space of constant curvature which meets the
boundary orthogonally is an umbilic surface in a three dimensional
submanifold of constant curvature.

Corollary: A minimal S? in S” which is invariant by reflection
through a hyperplane is an equatorial S? (totally geodesic).



